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Idea:


A database with incomplete information is a logical theory


Querying such a database is logical entailment: 

the database entails the query


This is computationally hard


Hence we need to approximate 
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Defines complete databases

More common assumption

Given a query , to answer check whetherψ

⊧ φCWA → ψ

To approximate find a translation   so that ψ ↦ α

R ⊧ α  implies  ⊧ φCWA → ψ

 is certainly trueψ  approximates certain answerα

Example:  is certainly true∃u∃v (R(u, v) ∧ (u ≠ v))



What  we  learned  back  then

• Answering queries is computationally hard (coNP-hard)


• Everything works well for unions of conjunctive queries


•  fragment of first-order logic


• Approximation schemes are rather complex (more so in Reiter’s paper)


• Neither of them was implemented (implementable?)

∧ , ∨ , ∃
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What we can prove:
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On a database without nulls  and  coincide 


For unions of conjunctive queries  and  coincide 


ψ t ψ ⊧ ψ t → ψ

ψ f ¬ψ ⊧ ψ f → ¬ψ

ψ ψ t

ψ ψ t

 and  unify by mapping variables to constants x̄ ȳ
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Tried in TPC-H queries with negation, on databases of sizes up to 10GB. 

Scales surprisingly well in about 75% of cases



Moral

• Don’t forget old papers


• Especially written by giants


• But don’t take them as-is many years later


• Be inspired and rethink



Why now? Marcelo Arenas, Pablo Barceló, Leonid Libkin,
Wim Martens, Andreas Pieris

Database Theory
Querying Data

(Preliminary Version)

July 14, 2022

Santiago Paris
Bayreuth Edinburgh

New database theory book


Freely available on GitHub


Over half of the material ( 600pp) already released 


We needed a clean chapter on incomplete data 

≈


