
Leonid Libkin

Approximations of Certain Answers in First-Order Logic

Two classical papers from JACM and JCSS in 1986

Two classical papers from JACM and JCSS in 1986

Two classical papers from JACM and JCSS in 1986

Two classical papers from JACM and JCSS in 1986

Idea:

A database with incomplete information is a logical theory

Querying such a database is logical entailment:

the database entails the query

This is computationally hard

Hence we need to approximate

How it works

How it works

A B

1 x

x 2

3 y

Relation R

φOWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y))
φCWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y) ∀u∀v (R(u, v) → (u, v) = (1,x) ∨ (u, v) = (x,2) ∨ (u, v) = (3,y)))∧

Defines complete databases

More common assumption

How it works

A B

1 x

x 2

3 y

Relation R

φOWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y))
φCWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y) ∀u∀v (R(u, v) → (u, v) = (1,x) ∨ (u, v) = (x,2) ∨ (u, v) = (3,y)))∧

Defines complete databases

More common assumption

Given a query , to answer check whetherψ

⊧ φCWA → ψ

How it works

A B

1 x

x 2

3 y

Relation R

φOWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y))
φCWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y) ∀u∀v (R(u, v) → (u, v) = (1,x) ∨ (u, v) = (x,2) ∨ (u, v) = (3,y)))∧

Defines complete databases

More common assumption

Given a query , to answer check whetherψ

⊧ φCWA → ψ

 is certainly trueψ

How it works

A B

1 x

x 2

3 y

Relation R

φOWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y))
φCWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y) ∀u∀v (R(u, v) → (u, v) = (1,x) ∨ (u, v) = (x,2) ∨ (u, v) = (3,y)))∧

Defines complete databases

More common assumption

Given a query , to answer check whetherψ

⊧ φCWA → ψ

To approximate find a translation so that ψ ↦ α

R ⊧ α implies ⊧ φCWA → ψ

 is certainly trueψ

How it works

A B

1 x

x 2

3 y

Relation R

φOWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y))
φCWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y) ∀u∀v (R(u, v) → (u, v) = (1,x) ∨ (u, v) = (x,2) ∨ (u, v) = (3,y)))∧

Defines complete databases

More common assumption

Given a query , to answer check whetherψ

⊧ φCWA → ψ

To approximate find a translation so that ψ ↦ α

R ⊧ α implies ⊧ φCWA → ψ

 is certainly trueψ approximates certain answerα

How it works

A B

1 x

x 2

3 y

Relation R

φOWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y))
φCWA = ∃x∃y (R(1,x) ∧ R(x,2) ∧ R(3,y) ∀u∀v (R(u, v) → (u, v) = (1,x) ∨ (u, v) = (x,2) ∨ (u, v) = (3,y)))∧

Defines complete databases

More common assumption

Given a query , to answer check whetherψ

⊧ φCWA → ψ

To approximate find a translation so that ψ ↦ α

R ⊧ α implies ⊧ φCWA → ψ

 is certainly trueψ approximates certain answerα

Example: is certainly true∃u∃v (R(u, v) ∧ (u ≠ v))

What we learned back then

• Answering queries is computationally hard (coNP-hard)

• Everything works well for unions of conjunctive queries

• fragment of first-order logic

• Approximation schemes are rather complex (more so in Reiter’s paper)

• Neither of them was implemented (implementable?)

∧ , ∨ , ∃

A fresh look 35 years later
Rather than one translation we have two: and ψ ↦ α ψ ↦ ψ t ψ ↦ ψ f

A fresh look 35 years later
Rather than one translation we have two: and ψ ↦ α ψ ↦ ψ t ψ ↦ ψ f

R(x̄)t := R(x̄)
(x = y)t := (x = y)

(ψ1 ∧ ψ2)t := ψ t
1 ∧ ψ t

2
(∃x ψ)t := ∃x ψ t

(¬ψ)t := ψ f

A fresh look 35 years later
Rather than one translation we have two: and ψ ↦ α ψ ↦ ψ t ψ ↦ ψ f

R(x̄)t := R(x̄)
(x = y)t := (x = y)

(ψ1 ∧ ψ2)t := ψ t
1 ∧ ψ t

2
(∃x ψ)t := ∃x ψ t

(¬ψ)t := ψ f

R(x̄) f := ¬∃y (R(ȳ) ∧ x̄ ⇑ ȳ)
(x = y) f := ¬(x = y) ∧ ¬null(x) ∧ ¬null(y)

(ψ1 ∧ ψ2) f := ψ f
1 ∨ ψ f

2
(∃x ψ) f := ∀x ψ f

(¬ψ) f := ψ t

A fresh look 35 years later
Rather than one translation we have two: and ψ ↦ α ψ ↦ ψ t ψ ↦ ψ f

R(x̄)t := R(x̄)
(x = y)t := (x = y)

(ψ1 ∧ ψ2)t := ψ t
1 ∧ ψ t

2
(∃x ψ)t := ∃x ψ t

(¬ψ)t := ψ f

R(x̄) f := ¬∃y (R(ȳ) ∧ x̄ ⇑ ȳ)
(x = y) f := ¬(x = y) ∧ ¬null(x) ∧ ¬null(y)

(ψ1 ∧ ψ2) f := ψ f
1 ∨ ψ f

2
(∃x ψ) f := ∀x ψ f

(¬ψ) f := ψ t

 and unify by mapping variables to constants x̄ ȳ

A fresh look 35 years later
Rather than one translation we have two: and ψ ↦ α ψ ↦ ψ t ψ ↦ ψ f

R(x̄)t := R(x̄)
(x = y)t := (x = y)

(ψ1 ∧ ψ2)t := ψ t
1 ∧ ψ t

2
(∃x ψ)t := ∃x ψ t

(¬ψ)t := ψ f

R(x̄) f := ¬∃y (R(ȳ) ∧ x̄ ⇑ ȳ)
(x = y) f := ¬(x = y) ∧ ¬null(x) ∧ ¬null(y)

(ψ1 ∧ ψ2) f := ψ f
1 ∨ ψ f

2
(∃x ψ) f := ∀x ψ f

(¬ψ) f := ψ t

What we can prove:

 produces a subset of certain answers to (thus)

 produces a subset of certain answers to (thus)

On a database without nulls and coincide

For unions of conjunctive queries and coincide

ψ t ψ ⊧ ψ t → ψ

ψ f ¬ψ ⊧ ψ f → ¬ψ

ψ ψ t

ψ ψ t

 and unify by mapping variables to constants x̄ ȳ

Does it work?
In theory, yes, in practice not quite. But we can be a bit smarter

Does it work?
In theory, yes, in practice not quite. But we can be a bit smarter

Issue: unrestricted negation and disjunction—

 produce HUGE sets

R(x̄) f := ¬∃y (R(ȳ) ∧ x̄ ⇑ ȳ)
(ψ1 ∧ ψ2) f := ψ f

1 ∨ ψ f
2

Does it work?
In theory, yes, in practice not quite. But we can be a bit smarter

R(x̄)+ := R(x̄)
(x = y)+ := (x = y)

(x ≠ y)+ := (x ≠ y) ∧ ¬null(x) ∧ ¬null(y)
(ψ1 ∧ ψ2)+ := ψ+

1 ∧ ψ+
2

(∃x ψ)+ := ∃x ψ+

(¬ψ)+ := ¬∃ȳ (ψ?(ȳ) ∧ x̄ ⇑ ȳ)

Issue: unrestricted negation and disjunction—

 produce HUGE sets

R(x̄) f := ¬∃y (R(ȳ) ∧ x̄ ⇑ ȳ)
(ψ1 ∧ ψ2) f := ψ f

1 ∨ ψ f
2

Does it work?
In theory, yes, in practice not quite. But we can be a bit smarter

R(x̄)+ := R(x̄)
(x = y)+ := (x = y)

(x ≠ y)+ := (x ≠ y) ∧ ¬null(x) ∧ ¬null(y)
(ψ1 ∧ ψ2)+ := ψ+

1 ∧ ψ+
2

(∃x ψ)+ := ∃x ψ+

(¬ψ)+ := ¬∃ȳ (ψ?(ȳ) ∧ x̄ ⇑ ȳ)

R(x̄)? := R(x̄)
(x = y)? := (x = y) ∨ null(x) ∨ null(y)

(x ≠ y)? := (x ≠ y)
(ψ1 ∧ ψ2)? := ψ?

1 ∧ ∃ȳ(ψ?
2[ȳ/x̄] ∧ x̄ ⇑ ȳ)

(∃x ψ)? := ∃x ψ?

(¬ψ)? := ¬ψ+

Issue: unrestricted negation and disjunction—

 produce HUGE sets

R(x̄) f := ¬∃y (R(ȳ) ∧ x̄ ⇑ ȳ)
(ψ1 ∧ ψ2) f := ψ f

1 ∨ ψ f
2

Does it work?
In theory, yes, in practice not quite. But we can be a bit smarter

R(x̄)+ := R(x̄)
(x = y)+ := (x = y)

(x ≠ y)+ := (x ≠ y) ∧ ¬null(x) ∧ ¬null(y)
(ψ1 ∧ ψ2)+ := ψ+

1 ∧ ψ+
2

(∃x ψ)+ := ∃x ψ+

(¬ψ)+ := ¬∃ȳ (ψ?(ȳ) ∧ x̄ ⇑ ȳ)

R(x̄)? := R(x̄)
(x = y)? := (x = y) ∨ null(x) ∨ null(y)

(x ≠ y)? := (x ≠ y)
(ψ1 ∧ ψ2)? := ψ?

1 ∧ ∃ȳ(ψ?
2[ȳ/x̄] ∧ x̄ ⇑ ȳ)

(∃x ψ)? := ∃x ψ?

(¬ψ)? := ¬ψ+

Issue: unrestricted negation and disjunction—

 produce HUGE sets

R(x̄) f := ¬∃y (R(ȳ) ∧ x̄ ⇑ ȳ)
(ψ1 ∧ ψ2) f := ψ f

1 ∨ ψ f
2

Tried in TPC-H queries with negation, on databases of sizes up to 10GB.

Scales surprisingly well in about 75% of cases

Moral

• Don’t forget old papers

• Especially written by giants

• But don’t take them as-is many years later

• Be inspired and rethink

Why now? Marcelo Arenas, Pablo Barceló, Leonid Libkin,
Wim Martens, Andreas Pieris

Database Theory
Querying Data

(Preliminary Version)

July 14, 2022

Santiago Paris
Bayreuth Edinburgh

New database theory book

Freely available on GitHub

Over half of the material (600pp) already released

We needed a clean chapter on incomplete data

≈

